Dual roles of smad proteins in the conversion from myoblasts to osteoblastic cells by bone morphogenetic proteins.
نویسندگان
چکیده
Bone morphogenetic proteins (BMPs) induce ectopic bone formation in muscle tissue in vivo and convert myoblasts such that they differentiate into osteoblastic cells in vitro. We report here that constitutively active Smad1 induced osteoblastic differentiation of C2C12 myoblasts in cooperation with Smad4 or Runx2. In floxed Smad4 mice-derived cells, Smad4 ablation partially suppressed BMP-4-induced osteoblast differentiation. In contrast, the BMP-4-induced inhibition of myogenesis was lost by Smad4 ablation and restored by Smad4 overexpression. A nuclear zinc finger protein, E4F1, was identified as a possible component of the Smad4 complex that suppresses myogenic differentiation in response to BMP signaling. In the presence of Smad4, E4F1 stimulated the expression of Ids. Taken together, these findings suggest that the Smad signaling pathway may play a dual role in the BMP-induced conversion of myoblasts to osteoblastic cells.
منابع مشابه
Pitx2 prevents osteoblastic transdifferentiation of myoblasts by bone morphogenetic proteins.
Muscle cells are often exposed to bone morphogenetic proteins (BMPs) in pathological muscle and/or bone conditions. Because BMPs function as strong bone inducers as well as myogenesis inhibitors, certain molecules likely prevent muscle cells from converting into pathologic bone; without these molecules, de novo bone would form as observed in myositis ossificans traumatica. When C2C12 myoblasts ...
متن کاملPlatelet-rich plasma stimulates osteoblastic differentiation in the presence of BMPs.
Platelet-rich plasma (PRP) is clinically used as an autologous blood product to stimulate bone formation in vivo. In the present study, we examined the effects of PRP on proliferation and osteoblast differentiation in vitro in the presence of bone morphogenetic proteins (BMPs). PRP and its soluble fraction stimulated osteoblastic differentiation of myoblasts and osteoblastic cells in the presen...
متن کاملBone morphogenetic proteins, their antagonists, and the skeleton.
Skeletal homeostasis is determined by systemic hormones and local factors. Bone morphogenetic proteins (BMP) are unique because they induce the differentiation of mesenchymal cells toward cells of the osteoblastic lineage and also enhance the differentiated function of the osteoblast. However, the activity of BMPs needs to be tempered by intracellular and extracellular antagonists. BMPs bind to...
متن کاملZC4H2 stabilizes Smads to enhance BMP signalling, which is involved in neural development in Xenopus
Bone morphogenetic proteins (BMPs) play vital roles in regulating stem cell maintenance, differentiation and embryonic development. Intracellularly, BMP signalling is mediated by Smad proteins, which are regulated post-transcriptionally through reversible phosphorylation and ubiquitination. ZC4H2 is a small nuclear protein associated with intellectual disability and neural development in humans...
متن کاملBone morphogenetic protein and retinoic acid signaling cooperate to induce osteoblast differentiation of preadipocytes
Mesenchymal cells can differentiate into osteoblasts, adipocytes, myoblasts, or chondroblasts. Whether mesenchymal cells that have initiated differentiation along one lineage can transdifferentiate into another is largely unknown. Using 3T3-F442A preadipocytes, we explored whether extracellular signals could redirect their differentiation from adipocyte into osteoblast. 3T3-F442A cells expresse...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 285 20 شماره
صفحات -
تاریخ انتشار 2010